Search results for "Cartilage engineering"

showing 2 items of 2 documents

Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations

2015

Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods: The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Result…

CartílagsCartilage ArticularScaffoldTime FactorsPolymersPolyestersBiomedical EngineeringMedicine (miscellaneous)BioengineeringKnee JointBone NailsProsthesis DesignBiomaterials03 medical and health scienceschemistry.chemical_compound0302 clinical medicineTissue engineeringTeixit ossiAbsorbable ImplantsmedicineAnimalsOrthopedic ProceduresTissue engineeringLactic Acid030222 orthopedicsSheepTissue ScaffoldsChemistryCartilageRegeneration (biology)Cartilage engineering030229 sport sciencesGeneral MedicineChondrogenesisSubchondral bone alterationsPolycaprolactonemedicine.anatomical_structureFISICA APLICADAPolycaprolactoneModels AnimalMAQUINAS Y MOTORES TERMICOSFemaleJointsImplantChondrogenesisPorosityBiomedical engineering
researchProduct

A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model

2020

The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3 mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them wi…

MaleMaterials scienceKnee JointPolyesters0206 medical engineeringBiomedical EngineeringBiocompatible Materials02 engineering and technologyCell freePolylactiderabbit knee modelMicrosphereBiomaterials03 medical and health sciencesMice0302 clinical medicinemedicineAnimals03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edadesCiencias Exactas030222 orthopedicsChitosanRabbit knee modelHyaline cartilageCartilage engineeringcartilage engineeringArticular cartilage regeneration020601 biomedical engineeringMicrospheresmedicine.anatomical_structureHyaline CartilageRAW 264.7 Cellsarticular cartilage regenerationpolylactideCiencias MédicasMAQUINAS Y MOTORES TERMICOSRabbitschitosanHumanities
researchProduct